LBP and GLCM Based Image Forgery Recognition
نویسندگان
چکیده
منابع مشابه
Digital Image Forgery Detection Based on GLCM and HOG Features
Millions of digital documents are produced day by day. With the availability of powerful computers and advanced photo editing softwares, the manipulation of digital images become very easy. For decades photographs are used as evidence in courts, but the increased use of computer graphics and image processing techniques undermines the trust in photographs. The driving forces of forgery detection...
متن کاملCopy Move Forgery Detection Using Glcm Based Statistical Features
The features Gray Level Co-occurrence Matrix (GLCM) are mostly explored in Face Recognition and CBIR. GLCM technique is explored here for Copy-Move Forgery Detection. GLCMs are extracted from all the images in the database and statistics such as contrast, correlation, homogeneity and energy are derived. These statistics form the feature vector. Support Vector Machine (SVM) is trained on all the...
متن کاملImage authentication using LBP-based perceptual image hashing
Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...
متن کاملVision Based Image Forgery Detection
Abstract: Nowadays, digital images can be easily modified by using high-performance computers, sophisticated photo-editing, computer graphics software, etc. These modifications will affect the authenticity of images, from law, politics, the media, and business. Detecting forgery in digital images is one of the major research activities in the current time. In general, altering the digital image...
متن کاملTexture Based Image Retrieval Using GLCM and Image Sub-Block
This study proposed an approach to retrieve images based on texture features using GLCM and image subblocks. Each image is divided into three rows and three columns with equal sizes. Texture features are extracted based on GLCM (Gray Level Co-occurrence Matrix) using four statistical features that is contrast, homogeneity, energy and correlation. The features are calculated in four directions (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Engineering & Technology
سال: 2018
ISSN: 2227-524X
DOI: 10.14419/ijet.v7i4.6.20478